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Abstract. Using a new reduction of order technique we obtain four conserved
quantities of the classical planar Kepler problem via the symmetries of the equations
of motion and an extra vector field. By passing to a suitable quotient manifold of
the evolution space we deduce that negative energy orbits are closed and periodie,
without having to solve the differential equation.

1. Introduction

In this paper we look at the classical Kepler problem through the application of a new
reduction of order technique [1]. We believe that this technique provides a systematic
means of producing first integrals from group actions more general than symmetries
without relying on the existence of a variational principle. Moreover, it 1s a powerful
tool for investigating global properties such as periodicity. The Kepler problem is a
good vehicle for a demonstration of these features.

The planar equations of motion are defined by a second-order differential equation
field on five-dimensional evolution space. There are three point symmetries which take
solutions of the equation of motion into other sclutions: time translation, which leaves
the solution curves invariant but alters their starting times; rotation about the origin,
which again leaves the curves invariant but alters the initial angular position; and the
transformation associated with the Runge~Lenz vector which allows the orientation
and eccentricity of the orbits to remain the same but changes the semi-latus rectum.
We wish to show that conserved quantities of the system, i.e. the objects which
remain invariant along solution curves, can be obtained using alternative techniques
to Noether’s theorem [2] or solving the differential equation [3, 4]. Lie’s method [2]
provides us with the three point symmetries mentioned above. To effect our technique
a fourth vector field is required which is a symmetry of the integrable distribution
made up of the second-order differential equation field and its three symmetries. To
find this field we modify the usual reduction of order via symmetry method by taking
successive quotients of the extended phase space by the three actions (for example,
we project down to a four-dimensional manifold by setting the time coordinate to a
constant, thus identifying all the orbits which only differ by a time translation) and
we reduce our differential equation field to first order on a two-dimensional quotient.

1 Permanent address: Department of Mathematics, La Trobe University, Bundoora, Victoria 3083,
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Here we obtain a symmetry of the projected vector field which we pull back to the
full evolution space, providing us with the fourth vector field. We emphasize that this
vector field is not a symmetry of the differential equation but of this equation and
its symmetries. We obtain four conserved quantities of the system without recourse
to canonical coordinates using a theorem presented in [1], which involves constructing
(in this case) four 1-forms from the four vector fields. For completeness, we make the
conserved quantities our new coordinates for the evolution space and find the basis of
vector fields (which includes the second-order differential equation field) dual to the
closed 1-forms constucted from them. In this way we find four commuting symmetries
for the problem.

The periodicity of the one-dimensional simple harmonic oscillator was investigated
by Wulfman and Wybourne [5] through the inspection of a compact subgroup of the
symmetry generators which contained the time translation generator. In the case
of the planar Kepler problem we found no obvious so{3) subalgebra so we loocked
for an alternative approach to the proof of periodicity of the negative energy orbits.
The two-dimensional quotient described above turns out to be a convenient place
to investigate properties of the solution curves. We find that one of the conserved
quantities which involves the energy can be expressed entirely by the coordinates of
this quotient. Furthermore, the projected differential equation field is tangent to each
level curve of this quantity. It turns out that, for negative energy values, these curves
are closed. By a simple argument, we deduce that this is also true for the phase-
space counterparts of the integral curves of our original differential equation field.
Finally, by projecting down to the base manifold, we deduce that the orbits are closed
and periodic for negative energy values, which is in agreement with known results on
the Kepler problem [3, 4]. Thus we obtain four conserved quantities of the system
and deduce the periodicity of the closed solution curves without having to solve the
differential equation.

The paper is organized as follows, In section 2 we project the second-order dif-
ferential equation field for the Kepler problem down onto a two-dimensional quotient.
Here we produce a symmetry of the projected field which we identify as our fourth
vector field. In section 3 we give an explanation of how a reduction of order is possible
using our four vector fields and present the theorem from [1] which we will use to find
our four conserved quantities. With these we construct a basis of closed 1-forms and
a dual basis of vector fields. In section 4 we obtain a first integral of the projected
differential equation field on two-dimensional coordinate submanifolds. By consider-
ing the curves on each level surface we identify the range of energy values for which
the solution curves are periodic.

2. Symmetries

The classical equation of motion for a particle in a gravitational field moving in R3\{0}
is given by

L BT
T+ F =0
where ;£ > 0 is the constant field strength. Each orbit is planar and so in any plane

with polar coordinates (r,#) we have the system of equations

F=rg? - £ (1a)

2
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. 278
0= - (1%)

The three well-known conserved quantities are: the energy £ := (v> + h%/r?) — p/r;

the magnitude of the angular momentum k := |L| = r24 and the Runge—Lenz vector
R:=#x L~ pr/r (see [2]). The configuration space is now M = R?\{0} and the
second-order differential equation field T' € x(F) (E := ExTM is the evolution space)
whose integral curves are lifted orbits of (1a) and (1b) is

N ANPS A K AN R %00
I: 3t+1‘3 +9 +(r9 —plr ) “ % (2)

Equivalently, T is defined by (T',dt} = 1, (T,6*) = 0 and (T,4') = 0, where #! :=
dr—7dt and §2 := d0—@dt are the contact forms and ¢! := dr —#df and qb2 := df — fdt
are the force forms (+ and § being substituted from (1a) and (16)). There are three
one-parameter group actions on R x M that map graphs of orbits into themselves [2].
These are called peint or Lie symmeiries and are generated by the following vector
fields on R x M:

X.

A
E 3

X: == Xo=t— 4+ =r— .
¢ aa “ at 3 or

Pl

{The strange ordering here is used to avoid confusion in section 3.) These vector
fields form a Lie algebra [X,, X;3] = 0, [X5, X;] = 0 and [X,, X,] = —=X,. Any vector
field X on R x M, has associated with it a unique vector field X(1) on E called the
{first) prolongation of X such that X1 projects onto X and for any contact 1-form
o, Lxmyais also a contact 1-form [6]. The first prolongations of X, X5, X, are

1 _ 0 m_ 0 w.,0.,29 1.9 ;0
X =5 Xs Y Xa = ‘Bt 3T T 3Ter a8
respectively, with
.Cxix)r =0 [.;ng)l_' = .ngnr =T

where Ly X denotes the Lie derivative along Y € x(E) of X € x{F).

There are insufficient symmetries to effect a complete reduction of order of the
problem, so we need a fourth field X, which is a symmetry of the integral distribution
D = span({T, X(l) xi0, xM), ie. Ly D CD. Tofind this field we take successive
quotients by the above actions as in Olver [7]. We can project by the action of a vector
field X if and only if £, T = AX for some function A on E. Considering the above
Lie derivatives, we can project by X‘(ll) and Xél? onto a three-dimensional quotient
with coordinates which we can identify as (r,r,). The projected vector fields of T

and Xgl) are

_. 9 - 5 0 200 8
r _rar+(r0 pfr B gy
- 2 Q_
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We are unable to project by X since Ly I‘ = —I and we require Lz, I = )«Xz

Nevertheless, we can produce a multiple of I‘ which does pass to the quotient. Noting
that

X(Blogr) =1  X,(rrM¥H) =0  Xy(6r¥%) =0
we may make a change of coordinates on this quotient

—3 1__ e 1/2

log r v =TT )y

v =6r

NI

so that

= 3r| 0 1, 2v 24\ 8 1,8
F_2r[6r‘+( +3v1 31}1) Gul 3" ﬁ]

Thus an appropriate multiple of T is (2r/#)T' since ng((Qr/r‘)f‘) = 0, where X, =
8/8r*. We can now project by };TQ to a two-dimensional quotient with coordinates
which we can identify with (v!,v?), where our projected vector field is

22
f_ (ol g} 8 208
F_(U +2v1 21:1)6111 ”avz'

A symmetry X; of I with Cxlf‘ =0is

1 @

17 172 gl

Pulling the chart back to E as part of the coordinate chart (1,8, r",v!,v?) and con-
verting back to the original coordinates (¢,r,8,r,8) we have, by an abuse of notation,

Lo
924 7

X, =

Although X, is a symmetry of I’ by construction, it is not a symmetry of I’ since

_ 1 (1) 4 gy
Lyl = ~F (x$ +6x{ — ).

However, X, is guaranteed to be a symmetry of the integrable distribution D. We
note that this is not a global statement because of the singularities of X;. X, could,
of course, have been found without resorting to the quotient technigue, but this is an
effective way of finding it.

3. First integrals

We will briefly digress to explain how the techniques in [1] allow a reduction using our
four vector fields. Suppose that f is a first integral of a second-order vector field

o .0 8

g a
T o T G

I:=



A canonical reduction of order for the Kepler problem 5469

on an n-dimensional manifold M (assumed smooth, second-countable, and Hausdorff)
where (t,2°%,u®) are local coordinates for E = R x TM and A® are smooth functions
on E. Then df will be a linear combination of the contact forms 6° := dz® —u®dt and
the force forms ¢® := du® — A®dt since I'(f) = 0. A distribution D is an assignment
of a vector subspace T, M to each p € M and, when regarded as a vector subspace of
x(M), is in involution if [X, Y] € D for each X,Y € D. By the Frobenius theorem, at
each point p € M, D then spans the tangent space to an inlegral submanifold, which

hae the eamme dimenginn ae DN and wa than caav T} ic Fraoboniue indaarable nravided this
LdS uwii Salns GlINLisiUn G 7y alll WO ulST 5aY & 15 1 70veRius INICEravit praOviualu vias

dimension is constant. The kernel or characlerisiic space of a differential form Q2 is
the span of vector fields which annihilate 2, kerQ = {X € x(M) : XuQ =0}. A
p-form Q is integrable if its kernel is Frobenius integrable and of maximal dimension
everywhere. Suppose that we have a Frobenius integrable distribution on £, D =
span({l, X,,...,X;,_1}), of dimension 2n and a vector field Z € x{E) which is a

Qmepfrv nf’n 'T‘hpn H‘\P form

XX, 10
YT (X0 1 Xy, 1 2)

where Q=8 A. .. AP Adl ... A¢", is a linear combination of the contact and force
Ffrmrna fainas T n — N Thamtbham . Alrcad amd an laanlly o — A Ffar cammn Brct
FAV SR \ﬂlll‘-c s _I b — U} s u‘ Hllcl ol ].D viyocu aliu ov lULal‘y w = uJ AU DUMAIL liLlou

integral f of I'. Once we realize that X4 ...1X,,_11Qis a Frobenius integrable 1-
form with kernel P with symmetry Z, the proof of this result is essentially a corcllary
to the following theorem.

Theorem. Let @ be a Frobenius integrable 1-form which is nowhere zero on some

Looni Y a7 TN SR o d e, LF v o=l e
open subset U/ of a manifold N, then a{id) = G if and only if 7 ={Ad0) for some

symmetry vector field X of # on U (that is, £ 8 = 88, 8 a smooth function on M, or
equivalently £, kerf = ker @) with X168 #0on U.

The first result can be generalized to the following theorem.
Theorem. Let {I be a k-form on a manifold ¥, and let span{{X,,...,X.}]} be a
k-dimensional distribution on open I/ € N satisfying X;3Q # 0 everywhere on U.

Further suppose that span{{X;,,,..., X;} UkerQ) is integrable for some j < k and
that X, is a symmetry of span({X;,,,..., X} UkerQ) fori=1,...,j. Put

ol = X1 X0 . 0X 10

ol = X0 X501 X0

ot =X 0Xy0. .. 0X,_,1Q

and

fori=1,...,k



5470 S E Godfrey and G E Prince

so that {w!,...,w*} is dual to {Xl,...,Xk}. Then dw! =0, dw? = Omodw!; du?® =
Omodw!,w?; .. .; dw’ = 0modw?,... w1 so that locally
wl — d‘)(l

w? = dy? — X, (y%)dy!

Wi =dyd - X,(v*)dvy? - (X1(‘}’3) - X2(73)X1(72)) dy!

W =dy moddy!,..., dy*?

for some 7%,...,4¢ € /\0 T*U (functions or O-forms on 7*U). Also the system
{wi* ... w*} is integrable modulo dv!,...,dy and locally = 1%dy' Ady2 A--- A
dy? Awitt A AWk for some 40 € /\0 T*U. Each 4% is uniquely defined up to the
addition of an arbitrary function of 4%, ..., v~}

Using this theorem and our four vector fields X(l) X(l) XL(,I) and X;, we can
calculate four first integrals for the system. We first obtam four 1-forms:

1 Xgl)J X:gl)J X‘(ll)_] Q

Tax®,x8 xW, x))

s XuxPaxiin
Q(X(l) (1),X1,X£1))

s XpxtixiVia
Q(X(l) X(l) X, X(l))

. XpxixiPio
- L .
Q(X:(S ):Xg )1X1)*¥‘(11))

where T is the characteristic vecior field of the 4-form 2, defined by

()4

Now X is a symmetry of the integrable distribution D = span{{T, X‘gl),X(l) Xél)})
and so w! is closed. Similarly, X g )is a symmetry of the integrable distibution D' =

span({T, X(l) X(l) ,X;}) and so w? is also closed. Thus we obtain two first integrals
from w! and w2 whlch turn out to be {up to a sign)

= (dr — 7 dt) A (A0 — 8 dt) A[d7 — (r8? — u/r?)dE] A

L=k F2i=3log|h|

respectively. )

From now on we will consider only the component E* of E for which # > 0. Instead
of X, it might appear X, = h2X, = (1/7)(8/87) does just as well as a symmetry of
the system, producing the only notable change [XI,X:EU] = —%X] and leaving w?
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closed. However, our original task was to find a X, as a symmetry of D, which will
not be the case for X; and, furthermore, w! will no longer be closed. «? and w* are not
closed, and we can still obtain two additional first integrals by w® = df3mod df!, df?
and w* = df*moddf?, df2 giving (up to a sign)

—rF . 28
r-:-‘2--;£+(_2;Wsm_l (—-—%w)ﬁ-t w22 < £<D
f3=<M+t £E=0

3p?

N :
| 22t pepr log (2V2Eri +4Er + 20) +t  E£>0

.y (= B2
sin ( o )—6’ E#0

;

o

2.9
\Etz'm‘1 (rh—g)—ﬁ £E=10

where R? = p? + 2h%E is the square of the Runge-Lenz vector. f? and f* represent
initial values of ¢ and @, respectively. We remark that doing these integrations is
tantamount to explicitly solving the equations of motion {la), (1b), while producing
f* and f? is not.

We now have local bases of 1-forms for E*, namely {d¢,df!,df%,df? df*} such
that T1df* = 0 and Tudf = 1, for T defined in (2) and f1, f2, f3, f* the conserved

quantities of the systern. We can calculate the dual coordinate basis vectors and
construct local bases for x(E1), denoted {T',8/8f1,8/85%,8/8F3,8/8f%). With the

aid of REDUCE and our expressions for w!,w? &%, w

X‘El) =

23
I

‘.

3wt we obtain the relations

9 3u sin-L 28r 4 p + 2r(r? 4+ &)
(~2£)5/2p2 R (=2£)2h27

p(=2h2rE + W =) 0 fpr-w2\ 8,
T T (C26)hiriR Jaf3 H Gmer Japs TH<E<D

i () ()

af 3u?rh? as3 (b2 + rifd) a1
9 3ulog (2(v2Eir + 267 + 1)) 2
af (2£)5/2 12 (28)372R

r(4€? — 3-%p + 228 — \/2_5&-1'-)) ., ( pr — h”) 8
_ 57

;€0
(26)2h27(V2Eri 4 2rE + p1) afs hR2r7
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At this point it is worth making a few remarks to identify the novel aspects of
this technigue. First of all, we do not require the vector fields that we use to be
symmetries of I' as, for example, Noether’s theorem does. X, is a case in point: it is
much easier to find than the symmetry 8/8f! and it is just as effective in producing
first integrals. Secondly, the fact that these fields may be interpreted as symmetries of
a reduced differential equation in general frees us from the necessity of using canonical
coordinates and quotients. We used them here because we wanted to demonstrate that
canonical coordinates are still useful and because we still need some quotient ideas to
establish the periodicity of the negative energy orbits in the last section. But they
are by no means the only way to find these vector fields. The third point is that first
integrals are produced in the original coordinate chart from a very simple formula, a
great advantage in algebraic computing. Indeed, the second theorem of this section
shows us exactly which vector fields to look for to minimize the number of quadratures
in any given problem.

4. Closure of £ < 0 orbits

We will now demonstrate that the negative energy orbits are periodic in time using
only the first integral h?£. We begin by showing that the integral curves of T' on
E* for which hA2£ < 0 project to closed curves on the quotient by the action of
X,El), Xgl),Xgl). We then use this result to prove that orbits on M for which A2 < 0
are closed and furthermore are periodic in time.

On passing to the quotient of E1 by the action of Xﬁ”,Xé”,X%” we found that
the integral curves of I project to curves with tangent

22
T = (v1+21;—1—2p) 9 —ugﬂ-.a—.

vl | 81 ov?

By the first theorem of the previous section, if we have a 1-form w on the quotient
(here Frobenius integrable by dimension) such that Tiw = 0, and a symmetry of T
(here we have X,) we obtain a closed 1-form

@

(Xydw)

dg =

where g is a conserved function of T, i.e. T'(g) = 0. By substituting

1 4

1T 512 Gyt
v
w=12dv + (vl + 2——-1- - 2—%) do?
v v
we obtain

97
dg = vle? l:vz dvt + (vl +2P—1 - 2-’%) dv2:1 .
v v
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Solving for g gives

g= %1}2:(1;12 +o - 2p).

1/2

By substituting v = #r1/2 and v = 6r%? we sce that, by an obvious abuse of

notation,

Alternatively, it follows from the previous expression for w! = d(h%£) that h2E
lives on these submanifolds with I'(h2£) = 0 and X, (h%€) = 1. -

Consequently, the integral curves of I' can be identified with the curves on E*,
h?& = constant, t = constant, # == constant, r* = constant. Geometrically, at each
point (t,r*,8, v, v?) of E¥ there is an integral curve of T' with a fixed value of h?£, K
say, and an integral curve of I" with A2€ = K; the collection of these latter curves along
the entire integral curve of T can loosely be identified with the projection of the integral
curve to the quotient. We wish to investigate the propertles of these ErOJectlons for
all values of £ Observing that g is a function of v and v*", g(v! ) = K, where
K is a non-zero constant, defines a curve on a v? > 0 surface whlch is symmetric
about the v? axis. This curve will be closed if it is continuous and crosses the v?
axis twice. We want to determine the values of K for which the curves are closed.
Setting h? = K gives (after some rearranging) T ) ¢ (v? >0
by assumption). Setting v! = 0 and rearranging the terms, we get the quartic in v2,

—2uv? — 2K = 0, which has roots v? 2 = 4+ /2 + 2K. To obtain two values
we require 0 < p? + 2K < p?, -u? < 2K < 0 Since K = h*f, this means
—p2/2h2 < £ < 0. Hence the curve cuts the +? axis at (u + /p2 + 2h2£)Y/2 and

— /2 +2h2€)1/? and is thus closed for this range of £ {continuity is self-evident).
For 2K > 0 we have only one value for v2° since v?° > 0, namely v?* = p+/p? + 2K.
Therefore, the curve will only cut the v? axis once at (u + /% + 2K)'/? and hence
for K > 0, i.e. for £ > 0 these curves are not closed. The intermediate case K = {}
corresponds to the open curves v? = 0 (radial orbits excluded from E*) or the open
curves v'° + v? = 2, v2 # 0. (The entire argument works for the case v? < 0 and
this corresponds to the time reversal symmetry in the problem,)

We have, in effect, shown that the projection of any integral curve of T with
h?E < 0 onto the quotient is closed, thus h2£ < 0 is a necessary condition for the
orbits on the base to be closed. Now we will show that this is also a sufficient condition
without having to solve the equations of motion. f TM * denotes the component of
TM for which & > 0 then the projection of ' by the action of 8/8t can be identified
with the field

& (1 . 8 1,,8
2 _1 2 —_ 1,2
TR ( vty ”) Gt 2V Y B

(up to a reparametrization) on TM7 in the chart (#*,0,v!,+?). Now the projection
of I'* to the quotient is tangent to closed curves for 12 < 0 as we have seen. On any
one of these closed curves, we choose a global parametrization a : R — M, (v, vz)p =
{(e!(s), o?(s)} with [ (s) = 1, this is periodic because the curve has a unique tangent

™= -gvl
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vector field & (the components of I'* are independent of s). Hence for some 81, 89,
a{s,) = a(s,) and the two reparametrizations, " (s} := a{s + 5, ) and at(s) =a(s+
s, ) satisfy a*(0) = af(O) and ¢*(s) = df(s), 50 by the uniqueness of integral curves of
this tangent vector field, a*(s) = at(s) (= a(s)) for all s. Thatis, a{s+s,) = a(s+s,)
for all 5, and hence o(s) = a(s+ (s, — 5;)) for all 5 so that the curve is periodic with
period T less than or equal to (s, — 5,).

The remaining differential equations for the A2£ < 0 integral curve of I'* through
pETM™ are

dr* 3 dé

a2 (s) ds
with some appropriate initial conditions r*{0) = rj} and 6(0} = #,. Rather than solve
these equations we will use the features of the curves on the quotient to prove that
this integral curve of I'™ is cxoseu

Using the expression for v! as a function of v? from the prewous analysis and the
relation (dv? + lvldﬂ)(r‘) = 0, we find that sin(6, — 0(s)) = (u—a? (s))/(p? +2K)1/2
(recall that u? + 2K > 0), and since a? is periodic in s with period T we have
#(s+ T) — 0(s) = 2x. That is, 8 increases by 27 on each traversal of the closed curve
on the quotient

T addit ¥ s omami~Adl
1l auul.uuu, T i3 4 perioca

are symmetric about the v* axis:
L] 3 ’ 1 *
r(p)=§ a'(s)ds + r}
0

- E fs—kT

0

= o¥(s)

al(s) ds + 13

where kT is the largest integer multiple of T' less than s. (The last equality comes
from fo al(s)ds = 0.) So it is clear that on this integral curve of I'* the coordinate
r* takes the same value at points where the angular coordinate is 8(p) and 6{p) + 2k~w.

Hence this curve is closed (the tangents at both values of @ are the same) and so r* and
2

»— £ avndeo®) ave narindis functinne nf 4 TI' ia alen planr that the corresnon nding arhit
7= SXP{\F ) 4l PENGalRl munluCis Gi v, 15 ai8C Cicar Lnal Lie (orresponGing oroll

(r(s),8(s)) on M is closed and hence A2 < 0 is a sufficient condition for orbit closure.
(We could have used the # coordinate along the integral curves of I'* to parametrize
the projected closed curves, but we needed at least some of the above reasoning to
show that @ takes all values.)

The periodicity in time of the negative energy orbits is a straightforward deduction
from their closure and time translation invariance: the argument is precisely the one
we used above to deduce that the o parametrization was periodic. Similarly, the
negative energy orbits for § < 0 are also closed. The period P = 2rpu(—28)"%2 is
easily deduced from the expression for f3 now that we know these orbits are periodic.
However, this last deduction effectively relies on the solution of the equations of motion

while the periodicity argument does not.

5. Conclusion

In this paper we have found a symmetry of the integrable distribution of I' and its
symmetries, D = span({I‘,X‘gl),Xél), Xél)}) for the Kepler problem. Using the four
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vector ficlds Xgl), x¢M, x gll and X,, we obtained four conserved quantites for the
systern in a relatively straightforward manner. We further reproduced the well-known
result that, for ~p2/2h% < £ < 0, the solution curves are closed and periodic. This
was achieved by reducing the second-order differential equation vector field down to a
two-dimensional first-order differential equation field and obtaining a first integral of
the projected vector field, namely h2€. The integral curves of this field are closed for
the above range of E. The closure of the negative energy orbits of our original second-
order field folllows without having to produce any further first integrals other than A
(to calculate the period of the # parametrization), an integral we needed anyway to
reduce the motion to a plane. The periodicity of these orbits is essentially due to the
time translation invariance of the problem. Qur approach required only symmetries
and the integration of a closed 1-form and certainly did not need anything equivalent
to a full solution technique for investigating the constant energy submanifolds. Our
approach should be applicable to any first integral, and we hope to use the method
to probe the existence of closed orbits for other problems where explicit solutions are
difficult to obtain.

Finally, we trust that this paper will serve to popularize the use of a manifestly
geometric approach to reduction of order which originated with the work of E Cartan
(we refer the reader to [1] for a fairly full account of the ideas we have used).
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