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A canonical reduction of order for the Kepler problem 

S E Godfreyt and G E Princet 
Department of Mathemati-, Statietics and Computing Science, Univasity of New 
England, Armidale, New South Wales 2351, Australia 

Received 17 October 1990, in final form 1 July I991 

Abstract. Using a new redudion of order technique we obtain four conserved 
quantities of the darsical planar Kepler problem via the symmetries of the equations 
of motion and an extra vector field. By passing to a suitable quotient manifold of 
the evolution space we deduce that negative energy orbits are closed and periodic, 
without having to solve the differential equation. 

1. In t roduct ion  

In this paper we  look at  the classical Kepler problem through the application of a new 
reduction of order technique [l]. We believe that this technique provides a systematic 
means of producing first integrals from group actions more general than symmetries 
without relying on the existence of a variational principle. Moreover, it is a powerful 
tool for investigating global properties such as periodicity. The Kepler problem is a 
good vehicle for a demonstration of these features. 

The planar equations of motion are defined by a second-order differential equation 
field on five-dimensional evolution space. There are three point symmetries which take 
solutions of the equation of motion into other solutions: time translation, which leaves 
the solution curves invariant but alters their starting times; rotation about the origin, 
which again leaves the curves invariant but alters the initial angular position; and the 
transformation associated with the Runge-Leuz vector which allows the orientation 
and eccentricity of the orbits to remain the same but changes the semi-latus rectum. 
We wish to show that conserved quantities of the system, i.e. the objects which 
remain invariant along solution curves, can be obtained using alternative techniques 
to Noether’s theorem [2] or solving the differential equation [3, 41. Lie’s method [2] 
provides us with the three point symmetries mentioned above. To effect our technique 
a fourth vector field is required which is a symmetry of the integrable distribution 
made up of the second-order differential equation field and its three symmetries. To 
find this field we modify the usual reduction of order via symmetry method by taking 
successive quotients of the extended phase space by the three actions (for example, 
we project down to a four-dimensional manifold by setting the time coordinate to a 
constant, thus identifying all the orbits which only differ by a time translation) and 
we reduce our differential equation field to first order on a two-dimensional quotient. 

t Permanent address: Department of Mathematics. La Trohe University, Bundoora. Victoria 3083, 
Australia 
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Here we obtain a symmetry of the projected vector field which we pull back to the 
full evolution space, providing us with the fourth vector field. We emphasize that this 
vector field is not a symmetry of the differential equation but of this equation and 
its symmetries. We obtain four conserved quantities of the system wiihout recourse 
io canonical Coordinates using a theorem presented in [l], which involves constructing 
(in this case) four 1-forms from the four vector fields. For completeness, we make the 
conserved quantities our new coordinates for the evolution space and find the basis of 
vector fields (which includes the second-order differential equation field) dual to the 
closed 1-forms constucted from them. In this way we find four commuting symmetries 
for the problem. 

The periodicity of the one-dimensional simple harmonic oscillator was investigated 
by Wulfman and Wybourne [5] through the inspection of a compact subgroup of the 
symmetry generators which contained the time translation generator. In the case 
of the planar Kepler problem we found no obvious so(3) subalgebra so we looked 
for an alternative approach to the proof of periodicity of the negative energy orbits. 
The two-dimensional quotient described above turns out to be a convenient place 
to investigate properties of the solution curves. We find that one of the conserved 
quantities which involves the energy can be expressed entirely by the coordinates of 
this quotient. Furthermore, the projected differential equation field is tangent to each 
level curve of this quantity. It turns out that, for negative energy values, these curves 
are closed. By a simple argument, we deduce that this is also true for the phase- 
space counterparts of the integral curves of our original differential equation field. 
Finally, by projecting down to the base manifold, we deduce that the orbits are closed 
and periodic for negative energy values, which is in agreement with known results on 
the Kepler problem [3, 41. Thus we obtain four conserved quantities of the system 
and deduce the periodicity of the closed solution curves without having to solve the 
differential equation. 

The paper is organized as follows. In section 2 we project the second-order dif- 
ferential equation field for the Kepler problem down onto a two-dimensional quotient. 
Here we produce a symmetry of the projected field which we identify as our fourth 
vector field. In section 3 we give an explanation of how a reduction of order is possible 
using our four vector fields and present the theorem from [l] which we will use to find 
our four conserved quantities. With these we construct a bayis of closed 1-forms and 
a dual basis of vector fields. In section 4 we obtain a first integral of the projected 
differential equation field on two-dimensional coordinate submanifolds. By consider- 
ing the curves on each level surface we identify the range of energy values for which 
the solution curves are periodic. 

S E Godfrey and G E Prince 

2. Symmetries 

The classical equation of motion for a particle in a gravitational field moving in  R3\{O) 
is given by 

where p > 0 is the constant field strength. Each orbit is planar and so in any plane 
with polar coordinates (r, Q) we have the system of equations 

' 2  P 
r2 

- -  
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The three well-known conserved quantities are: the energy C := $(P  + h a / ? )  - p / r ;  
the magnitude of the angular momentum h := 121 = raO and the Runge-Lenz vector 
R := r x 2 - p r / r  (see 121). The configuration space is now M = Rz\{O) and the 
second-order differential equation field r E x ( E )  ( E  := R x T M  is the evolution space) 
whose integral curves are lifted orbits of ( la)  and (Ib! is 

a a . a  a 2ie  a 
at aT ao a i  P as r := - + i- + 0- + (& - p / p  1- - -- . 

Equivalently, r is defined by ( r , d t )  = 1, (r,Oi) = 0 and (r,Q') = 0,  where,O'.;= 
dr- idt  and 82 := ds- id t  are the contact formsand 4' := d i - i d t  and 4' := do-8dt 
are the force forms (i' and being substituted from (la) and ( l b ) ) .  There are three 
one-parameter group actions on R x M that map graphs of orbits into themselves [Z]. 
These are called poinf or Lie symmetries and are generated by the following vector 
fields on R x M :  

a a a 2 a  X ,  := 7 X ,  := Y X2 := t l -  t -r: 
o't 0s ijt . 3 ijr 

(The strange ordering here is used to avoid confusion in section 3.) These vector 
fields form a Lie algebra [ X 4 , X 3 ]  = 0, [ X 3 , X z ]  = 0 and [ X z , X 4 ]  = - X 4 .  Any vector 
field X on R x M ,  has associated with it a unique vector field X ( ' )  on E called the 
(first) prolongalion of X such that X ( ' )  projects onto X and for any contact I-form 
(I; .C,Y(:)~ is also a contact L-form [ 6 ] ~  The  first prolongations ofX,i.X3,X2 are 

respectively, with 

where L,,.X denotes the Lie derivative along Y f x ( E )  of X E x ( E ) .  
There are insufficient symmetries to effect a complete reduction of order of the 

problem, so we need a fourth field X ,  which is a symmetry of the integral distribution 
'D := span({r ,X~) ,X~ ' ) ,X~ ' )}) ,  i.e. Lc,?'D 2 D. To find this field we takesuccessive 
quotients by the above actions as in Olver [?I. We can project by the action of a vector 
field X if and only if t,r = AX for some function X on E. Considering the above 
Lie derivatives, we can project by X F )  and X p I  onto a three-dimensional quotient 
with coordinates which we can identify as (r, i ,  0). The projected vector fields of r 
and Xi ' )  are 
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We are unable to  project by *2 since L -  f = -p and we require L*=p = A&. 
XI 

Nevertheless, we can produce a multiple of r which does pass to the quotient. Noting 
that 

S E  Godfrey and G E Prince 

Z2($ log r) = 1 f2(ir1/2) = o f 2 ( C 3 9  = o 

we may make a change of coordinates on this quotient 

r* = ;log r v l  z iril2 u2 = er3/' 

so that 

Thus an appropriate multiple o f f  is (2rl i ) f  since La2((2r/f)f)  = 0, where %2 = 
a/ar*. We can now project by %? to a two-dimensional quotient with coordinates 
which we can identify with ( u i , u 2 ) ,  where our projected vector field is 

A symmetry XI o f f .  with Lxl f  = 0 is 

Pulling the chart'back to E as part of the coordinate chart (t,6',r',v',v2) and con- 
verting back to the original coordinates ( t ,  ?,e,  i, i )  we have, by an abuse of notation, 

Although XI is a symmetry o f f  by construction, it is not a symmetry of r since 

However, X, is guaranteed to be a symmetry of the integrable distribution 2). We 
note that this is not a global statement because of the singularities of X,. XI could, 
of course, have been found without resorting to the quotient technique, but this is an 
effective way of finding it. 

3. First integrals 

We will briefly digress to explain how the techniques in [l] allow a reduction using our 
four vector fields. Suppose that f is a first integral of a second-order vector field 



A canonical reduction of order for  the Kepler problem 5469 

on an n-dimensional manifold M (assumed smooth, second-countable, and Hausdorff) 
where ( t ,  za, U") are local coordinates for E = R x T M  and Aa are smooth functions 
on E. Then df will be a linear combination of the contact forms 0" := dz' - u"dt and 
the force forms qY := du" - Aadt since r(f) = 0. A distribution 'D is an assignment 
of a vector subspace TPM to each p E M and, when regarded as a vector subspace of 
x ( M ) ,  is in involution if [X, Y ]  E 'D for each X, Y E V. By the Frobenius theorem, at  
each point p E M ,  'D then spans the tangent space to an integral submanifold, which 

dimension is constant. The kernel or characteristic space of a differential form R is 
the span of vector fields which annihilate 0, kern  = {X E x ( M )  : X J R  = 0). A 
pfo rm R is integrable if its kernel is Frobenius integrable and of maximal dimension 
everywhere. Suppose that we have a Frobenius integrable distribution on E ,  V = 
span({r,X,, . .  .,X2n-l}), of dimension 2n and a vector field 2 E x ( E )  which is a 
symmetry nf V. Then the fnrm 

h a  the same dir.-ension s.3 E, -Ed we then .%y v is A + c h : m  :a!eg-.b!e p:ovided this 

where R := 0' A , .  . A 8" A 4l , , . A  qP, is a linear Combination of the contact and force 
c /-:--- v , n  - n\ n . - h ~ - -  ' 
lylllw a b  - ",. I y I y L I c I ,  iri is c!osid and so !oca!ly iri = df fo: somc !?:st 
integral f of l'. Once we realize that X,J , . . J X2,-1~ R is a Frobenius integrable 1- 
form with kernel V with symmetry 2 ,  the proof of this result is essentially a corollary 
to the following theorem. 

Theorem. Let 0 be a Frobenius integrable 1-form which is nowhere zero on some 
._._ L... ., .'-- --..:r-,> &, AL.- , , rn \  - " :* ^ _ 1  --,.. :'- T ~ I "  .0 \ -1  P^_ up"', suuse:II " VI a lllalll'uIU 1 Y ,  LILCII U(l0,  = " I ,  all" " M y  I ,  1 = ,A ,  Y, 1"' >",,IC. 

symmetry vector field X of 0 on U (that is, CxO = PO, P a smooth function on M ,  or 
equivalently Cx ker0 = ker0) with XJ 0 # 0 on U. 

The first result can be generalized to the following theorem. 

.Theorem. Let G be a k-form on a maniioid N, and iet span(jX,,  ..., X,j j  be a 
k-dimensional distribution on open U C N satisfying X,J R # 0 everywhere on U .  
Further suppose that  span({Xj+l,. . . , X,} U kern)  is integrable for some j < IC and 
that  X i  is a symmetry of span({Xi+',. . . ,X,] U ker0 j  for i = 1,. . . , j .  Put 

and 

ai 
w' = - for i = 1 , .  . . , k x;J Ui  
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so that {w', . .. , w k )  is dual to {Xl,. . . , X k ) .  Then dw' = 0, dw2 = Omodw'; dw3 = 
Omodw1,w2; . ._ ;  d d  = Omodw',. ..,wj-', so that locally 

S E  Godfrey a n d  G E Prince 

w' = dy' 

w2 = dy2 - X,(y*)dy' 

w3 = dy3 - X2(y3)dy2 - (X1(y3) - X2(y3)X1(y2)) dy' 

d = dyJ mod dy', . . . , dyk-' 

for some y', . . . ,yJ  E A'T'U (functions or 0-forms on T'U), Also the system 
{dt', ..., w k ]  isintegrablemodulody', ..., dyJ andloca l lyn=y0dy 'Ady2A . . .  A 
dyj A d t '  A ... A wk for some yo E A'T'U. Each y' is uniquely defined up to the 
addition of an arbitrary function of y', . . . , y i - l .  

Using this theorem and our four vector fields X:',X?),X;') and X,, we can 
calculate four first integrals for the system. We first obtain four 1-form: 

where r is the characteristic vector field of the 4-form 0,  defined by 

R = (dr- idt)A(d6' -ddt)A[di- (rd2-p/r2)dt]A I d +  (T) dt] . 

Now XI is a symmetry of the integrable distribution 7) = s p a n ( { r , X ~ ' ) , X ~ ) , X ~ ' ) ) )  
and so w' is closed. Similarly, Xi') is a symmetry of the integrable distibution 2)' = 
span({r ,Xt ) ,XF) ,X1))  and so w2 is also closed. Thus we obtain two first integrals 
from w1 and w2 which turn out to be (up to a sign) 

f' := h 2 t  f 2  := 3loglhj 

respectively. 
From now on we will consider only the component Et of E for which 4 > 0. Instead 

of X, it might appear Xl = h2Xl = (l/i,)(Ll/Ll?) does just as well as a symmetry of 
the system, producing the only notable change [X,,X;')] = -$XI and leaving w 2  
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closed. However, our original task was to  find a X ,  as a symmetry of V ,  which will 
not be the case for X ,  and, furthermore, w' will no longer be closed. w3 and w 4  are not 
closed, andwe canstill obtaintwoadditionalfirst integralsbyw3 = d f 3 m o d d f ' , d f 2  
and w4 = df4 mod d f ', d f giving (up to  a sign) 

where R2 = p2 + 2h2C is the square of the Runge-Lenz vector. f 3  and f 4  represent 
initial values o f t  and 9,  respectively. We remark that doing these integrations is 
tantamount to  explicitly solving the equations of motion (la),  ( l b ) ,  while producing 
f' and f 2  is not. 

We now have local bases of 1-formsfor E+, namely {dt ,df ' ,d f2 ,df3 ,df4)  such 
that r Jdf '  = 0 and r J d t  = 1, for r defined in (2) and f', f 2 ,  f3 ,  f 4  the conserved 
quantities of the system. We can calculate the dual coordinate basis vectors and 
cons t r x?  !xt! bzses fer x ( E + ) ,  deneted Ir,8/8:',8:8f2,8:af3, 8/8f4]. With the 
aid of REDUCE and our expressions for w 1 , w 2 ,  w 3 , w 4  we obtain the relations 
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At this point it is worth making a few remarks to identify the novel aspects of 
this technique. First of all, we do not require the vector fields that we use to be 
symmetries of r as, for example, Noether's theorem does. X ,  is a case in point: it is 
much easier to find than the symmetry alar' and it is just as effective in producing 
first integrals. Secondly, the fact that these fields may be interpreted as symmetries of 
a reduced differential equation in general frees us from the necessity of using canonical 
coordinates and quotients. We used them here because we wanted to demonstrate that  
canonical coordinates are still useful and because we still need some quotient ideas to 
establish the periodicity of the negative energy orbits in the last section. But they 
are by no means the only way to find these vector fields. The third point is that first 
integrals are produced in the original coordinate chart from a very simple formula, a 
great advantage in algebraic computing. Indeed, the second theorem of this section 
shows us exactly which vector fields to  look for to minimize the number of quadratures 
in any given problem. 

4. Closure of E < 0 orbits 

We will now demonstrate that the negative energy orbits are periodic in time using 
only the first integral hZ&.  We begin by showing that the integral curves of r on 
Et for which h2E < 0 project to closed curves on the quotient by the action of 
X p ) ,  X $ ' ) , X p ) .  We then use this result to prove that orbits on M for which h?& < 0 
are closed and furthermore are periodic in time. 

On passing to the quotient of E+ by the action of X ~ ' ) , X $ ' ) , X ~ ' )  we found that 
the integral curves of r project to curves with tangent 

By the first theorem of the previous section, if we have a 1-form w on the quotient 
(here Frobenius integrable by dimension) such that FJ w = 0, and a symmetry of F 
(here we have X , )  we obtain a closed 1-form 

where g is a conserved function o f f ,  i.e. f (g)  = 0. By substituting 

we obtain 

U 
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Solving for g gives 

1 2' 11 29 g = T U  (U + v  - 2 p ) .  

By substituting v1 = fr1I2 and u2 = 0 d 2  we see that, by an obvious abuse of 
notation, 

', = h2[+(f2 + h2/r2) - p/rj 

= h2C. 

Alternatively, i t  follows from the previous expression for w1 = d(hZ&) that hZC 
lives on these submanifolds with f'(h2C) = 0 and X,(h2C) = 1 .  

Consequently, the integral curves of ? can be identified with the curves on E', 
h2C = constant, t = constant, 8 = constant, r' = constant. Geometrically, at each 
point ( t ,  r', 8, ul, v 2 )  of E+ there is an integral curve of r with a fixed value of h2E, I< 
say, and an integral curve o f f  with h2& = I<; the collection of these latter curves along 
the entire integral curve of r can loosely be identified with the projection of the integral 
curve to the quotient. We wish to investigate the propertie: of these projections for 
all values of E.  Observing that g is a function of U'' and U' , g ( v 1 ' , v 2  ) = I<, where 
K is a non-zero constant, defines a curve on a U' > 0 surface which is symmetric 
about the uZ axis. This curve will he closed if i t  is continuous and crosses the v Z  
axis twice. We want to determine the values of I< for which the curves are closed. 
Setting h2& = K gives (after some rearranging) VI' = 2p - v Z a  + 2K/u2' ( v 2  > 0 
by assumption). Setting v1 = 0 and rearranging the terms, we get the quartic in v 2 ,  
u2' - 2pvZz - 2K = 0, which has roots v2' = p f d , .  To obtain two values 
we require 0 < p' + 2 K  < p2,  i.e. -p' < 2 K  < 0. Since I< = h2&, this means 
- p 2 / 2 h 2  < E < 0. Hence the curve cuts the v2 axis a t  ( p  + J-)'l2 and 
( p  - J-)'12 and is thus closed for this range of C (continuity is self-evident). 
For 2K > 0 we have only one value for vz2 since U'' > 0, namely vz' = p+ d m .  
Therefore, the curve will only cut the u2 axis once at ( p  + - ) ' I2  and hence 
for I< > 0, i.e. for C > 0 these curves are not closed. The intermediate case I( = 0 
corresponds to the open curves u2 = 0 (radial orbits excluded from E+) or the open 
curves U]' + v2' = 2 p ,  v z  # 0. (The entire argument works for the case v2 < 0 and 
this corresponds to the time reversal symmetry in  the problem.) 

We have, in effect, shown that the projection of any integral curve of r with 
h2C < 0 onto the quotient is closed, thus h2C < 0 is a necessary condition for the 
orbits on the base to he closed. Now we will show that this is also a sufficient condition 
without having to solve the equations of motion. If TMf denotes the component of 
T M  for which 8 > 0 then the projection of r by the action of a/at can be identified 
with the field . 

(up to a reparametrization) on T M +  in the chart (r ' ,8,v1, U'). Now the projection 
of I? to the quotient is tangent to closed curves for h 2 E  < 0 as we have seen. On any 
one of these closed curves, we choose a global parametrization o : R -+ M ,  ( V I ,  v2) , ,  = 
(ol(s), U'(.)) with r*(s) = 1; this is periodic because the curve has a unique tangent 
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vector field & (the components of r' are independent of s). Hence for some sl, s,, 
m ( s l )  = a ( s z )  and the two reparametrizations, a'(.) := a ( s  + sl) and at(,) := a ( s  + 
8 , )  satisfy a'(0) = at(0) and &'(s) = &t(s), so by the uniqueness of integral curves of 
this tangent vector field, a'(.) = at(,) (= a(.)) for all s. That is, o(s+sl)  = a ( s + s , )  
for all s, and hence a(.) = Q(S + (sa - sI)) for all s so that the curve is periodic with 
period T less than or equal t o  (s, - sl). 

The remaining differential equations for the h2E < 0 integral curve of r' through 
p E TM-+ are 

S E Godfrey and G E Prince 

dr' 3 d8 
ds  2 ds  
- = -al(s)  - = aZ(s) 

with some appropriate initial conditions r*(O) = r; and B ( 0 )  = 8,. Rather than solve 
these equations we will use the features of the curves on the quotient t o  prove that  

Using the expression for v1 as a function of U' froni the previous analysis and the 
relation (du2+$v1d8)(r*) = 0 ,  wefind that sin(S,-S(s)) = ( p - ~ 2 ~ ( s ) ) / ( ~ 2 + 2 1 ~ ) 1 / 2  
(recall that p2 + 2 K  > 0), and since a2 is periodic in s with period T we have 
S(s + T) - S ( s )  = 2a. That  is, B increases by 2a on each traversal of the closed curve 
on the quotient. 

are symmetric about the v2 axis: 

ititegra; c.uive of r. is ciosed, 

T- "ad:,:-" _* :-"..--:-a:"$..""&:-- ^I ~ ... : r l -  ---:-A TL-........ * L -  ^1^^^-1 " 
111 0U"L"IYII) I IO 0 y'c"""Lc l " l l C Y l " l ,  "I  0 ."la,,, pc""" 1 "CLL."IC L11S L L Y I T "  CUI 1-0 

r"(p) = 1' m 1  (s) ds + r: 

- - 3 d ! S )  ds  + T: 
2 Jo 

where kT is the largest integer multiple of T less than s. (The last equality comes 
from J,, a'(.) ds  = 0.) So it is clear that on this integral curve of r' the coordinate 
r* takes the same value at  points where the angular coordinate is B(p) and B(p)  + 2 k a .  
Hence this curve is closed (the tangents at both values of B are the same) and so T* and 

(r(s), B(s))  on M is closed and hence h2& < 0 is a sufficient condition for orbit closure. 
(We could have used the 0 coordinate along the integral curves of r' to parametrize 
the projected closed curves, but we needed at  least some of the above reasoning t o  
show that 8 takes all values.) 

The periodicity in time of the negative energy orbits is a straightforward deduction 
from their c!osure and t h e  trznr!i?ion invariznce: the irgumen! is precise!y the one 
we used above to deduce that  the Q parametrization was periodic. Similarly, the 
negative energy orbits for 0 < 0 are also closed. The period P = 2ap(-2&)-3'2 is 
easily deduced from the expression for f 3  now that we know these orbits are periodic. 
However, this last deduction effectively relies on the solution of the equations of motion 
while the periodicity argument does not. 

7 = a fur.cti=-s of 8 ,  is that the cor:espon&fig orhit 

5. Conclusion 

In this paper we have found a symmetry of the integrable distribution of r and its 
symmetries, 2) = s p a n ( { r , X ~ ) , X ~ ' ) , X ~ ' ) ) )  for the Kepler problem. Using the four 
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vector fields X y ) ,  X F ) ,  Xp) and X,, we obtained four conserved quantites for the 
system in a relatively straightforward manner. We further reproduced the well-known 
result that, for - p 2 / 2 h 2  < & < 0, the solution curves are closed and periodic. This 
was achieved by reducing the second-order differential equation vector field down to a 
two-dimensional first-order differential equation field and obtaining a first integral of 
the projected vector field, namely hZE. The integral curves of this field are closed for 
the above range of E .  The closure of the negative energy orbits of our original second- 
order field folllows without having to ~ I O ~ I I C P  a ~ y  f ~ r t h ~ r  firs!. integra!~ ot,her than h 
(to calculate the period of the 9 parametrization), an integral we needed anyway to 
reduce the motion to a plane. The periodicity of these orbits is essentially due to the 
time translation invariance of the problem. Our approach required only symmetries 
and the integration of a closed 1-form and certainly did not need anything equivalent 
t o  a full solution technique for investigating the constant energy submanifolds. Our 
approach should be applicable to any first integral, and we hope to use the method 
to  probe the existence of closed orbits for other problems where explicit solutions are 
difficult to obtain. 

Finally, we trust that  this paper will serve to popularize the use of a manifestly 
geometric approach to reduction of order which originated with the work of E Cartan 
(we refer the reader to [l] for a fairly full account of the ideas we have used). 
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